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According to a well-known result of S. N. Bernstein, ~ can be approximated
uniformly on [-1, 1] by polynomials of degree <: n with an error of the order
[2"(n + 1)!]-1. In this note it is shown that the smallest (uniform norm) error
in approximating ~ by reciprocals of polynomials of degree <: n is also of the
order [2"(n + 1)!]-1. We denote throughout by P,,(x), Q,,(x) real polynomials
of degree <: n. We show, furthermore, that the smallest error in approximating
eZ by rational functions of the form P,,(x)/Q,,(x) where the coefficients of Q" are
:> 0 is again of that same order.

INTRODUCTION

It is known that the smallest uniform error obtained in approximating
eX on [-1,1] by polynomials of degree ~ n is of the order [2n(n + 1)!]-1.

If one analyzes this result carefully, then the following questions arise
naturally.

Q.l. How close can one approximate eX on [-1, 1] by reciprocals of
polynomials of degree ~ n?

Q.2. How close can one approximate eX on [-1, 1] by rational functions
of the form Pn(x)/Qix) where the coefficients of Qn are ~ O?

Q.3. How close can one approximate eX on [-1, 1] by general rational
functions of the form Pm(x)/Qn(x)?

In this note we answer these questions.
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Set
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En(eX) = j~£ II eX - P IIL"'I-l,lJ '

Eo,n(ex
) = j~£ II eX - p-1 IIL"'I-l,lJ '

E:(ej = :~f. II eX - r IIL"'I-l,lJ '
n

where 1Tn denotes the class of all real polynomials of degree at most nand
1T~ denotes the class of all rational functions of the form Pix)/Qn(x),
Qix) having nonnegative coefficients only.

Recently one of us [6] proved

TlffiOREM A. There is a rational function of the form Pm(x)/Qn(x) for
which

I X Pm(x) I (const)2-m
- n(m !)(n !)

e - Qn(x) L"'l-l,lj ~ (m + n)! (m + n + I)! .

In this note we prove the following results:

TlffiOREM B. For every Pm(x), Qix),

I
X Pm(x) I 2-2n-2m-4e-(2n+m+3l/2(m+n+2l

e - Qn(x) L"'I-l,lJ ~ (3 + 2(21 /2))n(m + n + 2)m+n+2 .

TlffiOREM C. For every Pn(x) (n ~ 2),

x (-1 (4 - e)
II e - [Pn x)] IIL"'I-l,lJ ~ 4e32n(n + I)! .

(1)

(2)

(3)

TIIEOREM D. Given Pn, Qn, the latter having nonnegative coefficients
only, we have

(4)

Remarks. The method used to prove Theorem B is a refinement of that
used in [5]. Unfortunately, this method does not work to prove Theorems C
and D.

We need four lemmas.

LEMMA 1 [4, p. 78]. Let a real function f(x) be (n + I) times continuously
differentiable in [-I, 1]. Then there exists a number g, -1 < g < 1, such that
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Notice that the above stated result of S. N. Bernstein follows from
Lemma 1.

LEMMA 2 [7, p. 68]. Ifmaxa";''''<'b I Pn(x)I ~ I, then for x < a and x> b,

I ( 2x - a - b )1IPn(x)I ~ Tn . b _ a '

where

LEMMA 3. Let .1 denote the difference operator with increment 1. Then

.1m+1«A + 1)'" Q(x)) = (A + 1)'" «A + 1) .1 + A)m+1 Q(x).

Proof It is well known [3, p. 97, (10)] that

.1n«A + 1)'" Q(x)) = fo C) .1iQ(X) .1n-iEi(A + I)"', (*)

where E = 1 + .1.
A little computation based on (*) and the fact that

.1mf(x) = ~ (_1)m-k (~) f(x + k)
k=O

gives the result.

LEMMA 4 [3, p. 13]. Iff(x) is a polynomial of degree at most n, then

ProofofTheorem B. We prove here for convenience that for each A > 0,
and with ex = m + n + 2,

(5)

Set

Normalize Q..(x) so that

Max I Q(x)I = 1.
[-""OJ

(6)

(7)



24

Then by Lemma 2,
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Max I Q(x) \ :s;;; (3 + 2(2)1{2)".
[-<X,ct]

(8)

From (6) and (8),

II(A + 1)'" Q,,(x) - Pm(x)IILCXl[_<x.<x] :s;;; €(3 + 2(21{2))". (9)

Set R(x) = QnCx){A + 1)'" - Pm(x). Then by Lemma 3,

m+1 + 1
.1m+1R(x) = ~~ (m. ) (_1)m+l-i R(x + i)

i~O I

= .1m+l[{A + 1)'" Q,,(x) - Pm(x)] (10)

= .1m+1[Q,,(x)(A + 1)"']

= (A + 1)'" «A + 1) .1 + A)m+l Q,,(x).

From (10) we get, for -IX :s;;; X :s;;; n + 1,

Set

Sex) = «A + 1) .1 + A)m+1 Q,,(x).

Then, for -IX :s;;; X :s;;; 0, by Lemma 4 and (11),

I Q,,(x)1 :s;;; \«A + 1).1 + A)-m-l S(x) I

:s;;; A-m-1 1(1 + (A ; 1) .1r
m

-
1

S(x)1

:s;;; A-m-l (A + 1)"+1 'II (m :- i) I (i) ISex + 1)1
A i=O 1 I~O 1

:s;;; €2m+1(3 + 2(21{2))" A-m-"-2(A + 1)n+1+"2n+1 ~~ (m 1i)

:s;;; €2m+"+2(3 + 2(21{2))"A-m-"-2 (A + 1)n+1+"2m+"+2.

(12)

Hence, at a point x E [-IX, 0], we get from (12) and (7),

€ ? Am+"+2 2-2"-2m--4(3 + 2(2)1/2)-" (A + 1)-"-1-,,. (13)

(5) follows from (13), and Theorem B follows from (5), by choosing
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COROLLARY. For any Pm(x), Qn(x),

II
x Pm(x) II (b - a)m+n+2e(a+b)j2(m+n+2)

e - Qn(X) Loo[a,b] ~ gm+n+2(3 + 2(21/2»ne(b-aHn+1+a:)j2(m+n+2) .

Proof From (5),

Set

25

(5')

y

so that y E [-ex, ex] ~ X E [a, b].
From (5') and (*),

ex(2x - a - b)
b-a '

(*)

II
P(x) II (A + 1)«a+b)/(a-b)Am+n+22-2n-2m-4

(A + 1)2"''''(b-a)-1 - Q(x) LOO[a,b] ~ (3 + 2(21/2»n(A + 1)n+1+a: . (**)

Now choose

(
b - a)(A + I) = exp ~ ;

then the result follows from (**).

Proof of Theorem C. For a Pn(x) and [-I, I], set

Then on [-I, 1],

I Pn(x) - r x I ~ ~e-X I Pn(X) I ~ ~ I P.:'l(x)1 .
e

Also, on [-I, I],

I I I '" 1Pn(x) ~ e - ~ ~ e- ~.

From Theorem A, we have for the case 111 = 0, and all n ~ 2,

(***)

(14)

(15)

(16)

(17)
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From (16) and (17),

Le.,

From (15) and (18),

By Lemma 1 and (19),
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4e
Max I Pix) I <4--'
[-1,1] - e

_'" 4e
IPix)-e 1<-4-'-e

(18)

(19)

4ee2
_'" 1

4 - e ~ En(e ) ~ e2n(n + I)! .

From (20) we have the required result.

Proof of Theorem D. Set

o= 1\ e'" - Pn(x) II
Qn(x) L"'[_l,l]'

As before, on [-1, 1],
n

I e"'Q(x) - Pn(x)I < 0 L ak'
k~O

(20)

(21)

(22)

(23)

where A k denote the Fourier-Chebychev coefficients. Since all bk are ~ 0,
we have [1, p. 116],

1 [ n + 3 (n + 4)(n + 5) ]
An+! = 2n bn+! +22 bn+3 + 242! bn+5 + ... .

Further, it is known [1, p. 111] that

Eif(x» ~ (A;'+! + A;'+2 + A;'+3 + .. .)1/22-1/2. (24)

Hence,

(25)
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From (22), (23), and (25), we have

A simple calculation gives

ao a1 a2 1 (~)
bn+1 = (n + I)! + n! + (n - I)! + .,. + an ~ (n + I)! ~o ak .

Hence, from (26), (27), and (23),

i.e.,

Remarks on Theorems A-D. By Bernstein's result, we have

lim{(n + I)! En(ex)p/n = 2-1.
n....""

From Theorem A, with m = 0,

E (X)";:: const. . 2-n

O,n e "" (n + 1)1

From Theorem C,

From (30) and (31),

~~{(n + I)! Eo,n(ex)}l/n = t.

From Theorem D,

On the other hand, by Lemma 1,

E:(eX) ~ 2n(n ~ I)!'

27

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)
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Hence by (33) and (34) we have

(35)

Thus, from (29), (32), and (35),

lim{(n + I)! En(e"')}1/n = lim{(n + 1)! Eo nCe"')}1/n
n~~ ~oo'

(36)
= lim{(n + 1)! E:(e"')} = 2-1.

1'1->00

(36) shows that for e"', En, Eo.n , and E::, are of the same order. Does this
holds more generally? We shall show that this phenomenon fails for e'" - e-1

and for e-"'.
From the above results it is clear that for e'" - e-1 the formulas for E,.

and E::, are the same as in (36). It can also be shown easily [2, p. 391] that
e'" - e-1 can be approximated uniformly by reciprocals of polynomials
of degree n as close as we wish. But Eo.n(e'" - e-1) is not known. We prove
here the following

THEOREM E. Every Pn(x) (n ~ 3) satisfies

II
e'" - e-1 __1 II >- _1

Pn(x) LOO[-l,lj "" 28n2
•

Proof Set

1\
1 II8 - e'" - e-1 - --

- Pn(x) Loo[-l,lj'

Then we have over the interval [n-2 - 1, 1], from (38),

I 1 I '" 1 '" e
n
-' 1 '" i 2 '"-- >- e - - - 0 ~ -- - - - 0 ~ e- n- - o.

P(x) "" e e e

Case (i). If 1/en2 - 8 ~ 0, then

I
8~-2'en

Case (ii). If l/en2 - 8 > 0, then from (39),

en2

Max I P(X)I ~ 1 28 .
(,.-'-1.1) - en

(37)

(38)

(39)

(40)

(41)
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By applying Lemma 2 to (41), we obtain

25n2

IP(O)I ~ Max IP(x) I ~ I 2S .
[-1,1] - en

On the other hand, we get from (38)

liS ~ I P(O)I·

From (42) and (43),

29

(42)

(43)

(44)

Equation (37) follows from (40) and (44).
Clearly Eie-") = Eie"), Eo.n(e-") = Eo.n(e"). But as we shall see,

m(e-") is much smaller.

THEOREM F. There is a rational function of degree n and of the form

Pix) I;'tn(t - I - x)ne-t dt
rex) = Qn(x) = I;;'tn(t + I + x)ne-t dt '

for which we have,jor all n ~ 2,

e
II e-" - er(x)IIL",,[_l.l] ~ (2n)!'

Proof It is easy to check that for -I ~ x ~ I,

(45)

(46)

= II;tn(t - x - l)ne-t dt - I~" (t - x - l)ntne-t dt I
I;tn(t + I + x)ne-t dt (47)

I I~+" tn(x + I - tte-t dt I II
I I;;'tn(t + I + x)ne-t dt I 12 •

By observing the known fact that

t(x + I _ t) ~ (1 ~ X)2 ,

we get for all x E [-I, I]

(48)
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On the other hand, we have for -I ~ x ~ I,

12 ): r t 2ne-t dt = (2n)!.
o

Equation (46) follows from (47), (48), and (49).

OPEN PROBLEMS

(49)

Q.l. Is it possible to approximate e~ on [-I, I] by polynomials of degree
n having nonnegative coefficients only with an error better than the one
obtained by 2:==0 xk(k! ?

Q.2. How close can one approximate e'" on [-I, I] by monotone poly­
nomials of degree ~ n?

Q.3. How close can one approximate e'" on [-1,1] by the ratio of two
monoton polynomials of degree ~ n?
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