Rational Approximation to e^x and to Related Functions

D. J. NEWMAN

Temple University, Philadelphia, Pennsylvania 19122

AND

A. R. REDDY

The Institute for Advanced Study, Princeton, New Jersey 08540 and Rutgers University, New Brunswick, New Jersey 08903

Communicated by Oved Shisha

Received April 6, 1977

According to a well-known result of S. N. Bernstein, e^x can be approximated uniformly on [-1, 1] by polynomials of degree $\leq n$ with an error of the order $[2^n(n + 1)!]^{-1}$. In this note it is shown that the smallest (uniform norm) error in approximating e^x by reciprocals of polynomials of degree $\leq n$ is also of the order $[2^n(n + 1)!]^{-1}$. We denote throughout by $P_n(x)$, $Q_n(x)$ real polynomials of degree $\leq n$. We show, furthermore, that the smallest error in approximating e^x by rational functions of the form $P_n(x)/Q_n(x)$ where the coefficients of Q_n are ≥ 0 is again of that same order.

INTRODUCTION

It is known that the smallest uniform error obtained in approximating e^x on [-1, 1] by polynomials of degree $\leq n$ is of the order $[2^n(n+1)!]^{-1}$.

If one analyzes this result carefully, then the following questions arise naturally.

Q.1. How close can one approximate e^x on [-1, 1] by reciprocals of polynomials of degree $\leq n$?

Q.2. How close can one approximate e^x on [-1, 1] by rational functions of the form $P_n(x)/Q_n(x)$ where the coefficients of Q_n are ≥ 0 ?

Q.3. How close can one approximate e^x on [-1, 1] by general rational functions of the form $P_m(x)/Q_n(x)$?

In this note we answer these questions.

Set

$$E_n(e^x) = \inf_{P \in \pi_n} || e^x - P ||_{L_{\infty[-1,1]}},$$

$$E_{0,n}(e^x) = \inf_{P \in \pi_n} || e^x - P^{-1} ||_{L_{\infty[-1,1]}},$$

$$E_n^*(e^x) = \inf_{r \in \pi_n^*} || e^x - r ||_{L_{\infty[-1,1]}},$$

where π_n denotes the class of all real polynomials of degree at most *n* and π_n^* denotes the class of all rational functions of the form $P_n(x)/Q_n(x)$, $Q_n(x)$ having nonnegative coefficients only.

Recently one of us [6] proved

THEOREM A. There is a rational function of the form $P_m(x)/Q_n(x)$ for which

$$\left| e^{x} - \frac{P_{m}(x)}{Q_{n}(x)} \right|_{L_{\infty[-1,1]}} \leq \frac{(\text{const})2^{-m-n}(m!)(n!)}{(m+n)!(m+n+1)!}.$$
 (1)

In this note we prove the following results:

THEOREM B. For every $P_m(x)$, $Q_n(x)$,

$$\left| e^{x} - \frac{P_{m}(x)}{Q_{n}(x)} \right|_{L_{\infty}[-1,1]} \ge \frac{2^{-2n-2m-4}e^{-(2n+m+3)/2(m+n+2)}}{(3+2(2^{1/2}))^{n}(m+n+2)^{m+n+2}}.$$
 (2)

THEOREM C. For every $P_n(x)$ $(n \ge 2)$,

$$\|e^{x} - [P_{n}(x)]^{-1}\|_{L_{\infty}[-1,1]} \ge \frac{(4-e)}{4e^{3}2^{n}(n+1)!}.$$
(3)

THEOREM D. Given P_n , Q_n , the latter having nonnegative coefficients only, we have

$$\left| e^{x} - \frac{P_{n}(x)}{Q_{n}(x)} \right|_{L_{\infty}[-1,1]} \ge \frac{1}{2^{n}(n+1)! (2^{1/2})}.$$
 (4)

Remarks. The method used to prove Theorem B is a refinement of that used in [5]. Unfortunately, this method does not work to prove Theorems C and D.

We need four lemmas.

LEMMA 1 [4, p. 78]. Let a real function f(x) be (n + 1) times continuously differentiable in [-1, 1]. Then there exists a number ξ , $-1 < \xi < 1$, such that

$$E_n(f) = \frac{|f^{(n+1)}(\xi)|}{2^n(n+1)!}.$$

22

Notice that the above stated result of S. N. Bernstein follows from Lemma 1.

LEMMA 2 [7, p. 68]. If $\max_{a \le x \le b} |P_n(x)| \le 1$, then for x < a and x > b,

$$|P_n(x)| \leq \Big| T_n\left(\frac{2x-a-b}{b-a}\right)\Big|,$$

where

$$2T_n(x) = (x + (x^2 - 1)^{1/2})^n + (x - (x^2 - 1)^{1/2})^n.$$

LEMMA 3. Let Δ denote the difference operator with increment 1. Then

$$\Delta^{m+1}((A + 1)^{x} Q(x)) = (A + 1)^{x} ((A + 1) \Delta + A)^{m+1} Q(x)$$

Proof. It is well known [3, p. 97, (10)] that

$$\Delta^{n}((A+1)^{x} Q(x)) = \sum_{i=0}^{n} {n \choose i} \Delta^{i} Q(x) \Delta^{n-i} E^{i}(A+1)^{x}, \qquad (*)$$

where $E = 1 + \Delta$.

A little computation based on (*) and the fact that

$$\Delta^{m} f(x) = \sum_{k=0}^{m} (-1)^{m-k} {\binom{m}{k}} f(x+k)$$

gives the result.

LEMMA 4 [3, p. 13]. If f(x) is a polynomial of degree at most n, then

$$(1 + \Delta)^{-n}f(x) = \sum_{i=0}^{n} (-1)^{i} {n+i-1 \choose i} \Delta^{i}f(x).$$

Proof of Theorem B. We prove here for convenience that for each A > 0, and with $\alpha = m + n + 2$,

$$\left\| (A+1)^{x} - \frac{P_{m}(x)}{Q_{n}(x)} \right\|_{L_{\infty}[-\alpha,\alpha]} \ge \frac{A^{m+n+2}2^{-2n-2m-4}}{(3+2(2)^{1/2})^{n} (A+1)^{n+1+\alpha}}.$$
 (5)

Set

$$\epsilon = \left\| (A+1)^{z} - \frac{P_{m}(x)}{Q_{n}(x)} \right\|_{L_{\infty}[-\alpha,\alpha]}.$$
(6)

Normalize $Q_n(x)$ so that

$$\max_{[-\alpha,0]} |Q(x)| = 1.$$
⁽⁷⁾

Then by Lemma 2,

$$\max_{[-\alpha,\alpha]} |Q(x)| \leq (3+2(2)^{1/2})^n.$$
(8)

From (6) and (8),

$$\|(A+1)^{x} Q_{n}(x) - P_{m}(x)\|_{L_{\infty}[-\alpha,\alpha]} \leq \epsilon (3+2(2^{1/2}))^{n}.$$
(9)

Set $R(x) = Q_n(x)(A+1)^x - P_m(x)$. Then by Lemma 3,

$$\begin{aligned} \Delta^{m+1}R(x) &= \sum_{i=0}^{m+1} \binom{m+1}{i} (-1)^{m+1-i} R(x+i) \\ &= \Delta^{m+1}[(A+1)^x Q_n(x) - P_m(x)] \\ &= \Delta^{m+1}[Q_n(x)(A+1)^x] \\ &= (A+1)^x ((A+1) \Delta + A)^{m+1} Q_n(x). \end{aligned}$$
(10)

From (10) we get, for $-\alpha \leq x \leq n+1$,

$$|((A+1) \Delta + A)^{m+1} Q_n(x)| \leq (A+1)^{-x} 2^{m+1} \epsilon (3+2(2^{1/2}))^n.$$
(11)

Set

$$S(x) = ((A + 1) \Delta + A)^{m+1} Q_n(x).$$

Then, for $-\alpha \leq x \leq 0$, by Lemma 4 and (11),

$$|Q_{n}(x)| \leq |((A + 1)\Delta + A)^{-m-1} S(x)|$$

$$\leq A^{-m-1} \left| \left(1 + \frac{(A + 1)}{A} \Delta \right)^{-m-1} S(x) \right|$$

$$\leq A^{-m-1} \left(\frac{A + 1}{A} \right)^{n+1} \sum_{i=0}^{n+1} \binom{m+i}{i} \sum_{l=0}^{i} \binom{i}{l} |S(x+l)|$$

$$\leq \epsilon 2^{m+1} (3 + 2(2^{1/2}))^{n} A^{-m-n-2} (A + 1)^{n+1+\alpha} 2^{n+1} \sum_{i=0}^{n+1} \binom{m+i}{i}$$

$$\leq \epsilon 2^{m+n+2} (3 + 2(2^{1/2}))^{n} A^{-m-n-2} (A + 1)^{n+1+\alpha} 2^{m+n+2}.$$
(12)

Hence, at a point $x \in [-\alpha, 0]$, we get from (12) and (7),

$$\epsilon \ge A^{m+n+2} \, 2^{-2n-2m-4} (3+2(2)^{1/2})^{-n} \, (A+1)^{-n-1-\alpha}. \tag{13}$$

(5) follows from (13), and Theorem B follows from (5), by choosing

$$(A+1) = \exp\left(\frac{1}{(m+n+2)}\right).$$

24

COROLLARY. For any $P_m(x)$, $Q_n(x)$,

$$\left\| e^{x} - \frac{P_{m}(x)}{Q_{n}(x)} \right\|_{L_{\infty[a,b]}} \ge \frac{(b-a)^{m+n+2}e^{(a+b)/2(m+n+2)}}{8^{m+n+2}(3+2(2^{1/2}))^{n}e^{(b-a)(n+1+\alpha)/2(m+n+2)}}$$

Proof. From (5),

$$\left\| (A+1)^{y} - \frac{P(y)}{Q(y)} \right\|_{L_{\infty[-\alpha,\alpha]}} \ge \frac{A^{m+n+2}2^{-2n-2m-4}}{(3+2(2^{1/2}))^{n}(A+1)^{n+1+\alpha}}.$$
 (5')

Set

$$y = \frac{\alpha(2x - a - b)}{b - a},\tag{*}$$

so that $y \in [-\alpha, \alpha] \rightarrow x \in [a, b]$. From (5') and (*),

$$\left\| (A+1)^{2x\alpha(b-a)^{-1}} - \frac{P(x)}{Q(x)} \right\|_{L_{\infty[a,b]}} \ge \frac{(A+1)^{((a+b)/(a-b))}A^{m+n+2}2^{-2n-2m-4}}{(3+2(2^{1/2}))^n(A+1)^{n+1+\alpha}} .$$
(**)

Now choose

$$(A+1) = \exp\left(\frac{b-a}{2\alpha}\right); \qquad (***)$$

then the result follows from (**).

Proof of Theorem C. For a $P_n(x)$ and [-1, 1], set

$$\epsilon = \left\| e^x - \frac{1}{P_n(x)} \right\|. \tag{14}$$

Then on [-1, 1],

$$|P_n(x) - e^{-x}| \leq \epsilon e^{-x} |P_n(x)| \leq \frac{\epsilon |P_n(x)|}{e^{-1}}.$$
 (15)

Also, on [-1, 1],

$$\left|\frac{1}{P_n(x)}\right| \ge e^x - \epsilon \ge \frac{1}{e} - \epsilon.$$
 (16)

From Theorem A, we have for the case m = 0, and all $n \ge 2$,

$$\epsilon \leqslant \frac{1}{4}.$$
 (17)

From (16) and (17),

$$\left|\frac{1}{P_n(x)}\right| \geq \frac{1}{e} - \frac{1}{4} = \frac{4-e}{4e},$$

i.e.,

$$\max_{[-1,1]} |P_n(x)| \leq \frac{4e}{4-e}.$$
 (18)

From (15) and (18),

$$|P_n(x) - e^{-x}| \leq \frac{4\epsilon}{4-e}.$$
 (19)

By Lemma 1 and (19),

$$\frac{4\epsilon e^2}{4-e} \ge E_n(e^{-x}) \ge \frac{1}{e^{2^n(n+1)!}}.$$
(20)

From (20) we have the required result.

Proof of Theorem D. Set

$$\delta = \left\| e^{x} - \frac{P_{n}(x)}{Q_{n}(x)} \right\|_{L_{\infty[-1,1]}}.$$
(21)

As before, on [-1, 1],

$$|e^{x}Q(x) - P_{n}(x)| \leq \delta \sum_{k=0}^{n} a_{k}, \qquad (22)$$

where $Q_n(x) = \sum_{k=0}^n a_k x^k > 0$ on [-1, 1], and $a_k \ge 0$. Set

$$f(x) = e^{x}Q_{n}(x) = \sum_{k=0}^{\infty} b_{k}x^{k} = \frac{A_{0}}{2} + \sum_{k=0}^{\infty} A_{k}T_{k}(x),$$

where A_k denote the Fourier-Chebychev coefficients. Since all b_k are ≥ 0 , we have [1, p. 116],

$$A_{n+1} = \frac{1}{2^n} \left[b_{n+1} + \frac{n+3}{2^2} b_{n+3} + \frac{(n+4)(n+5)}{2^4 2!} b_{n+5} + \cdots \right].$$
(23)

Further, it is known [1, p. 111] that

$$E_n(f(x)) \ge (A_{n+1}^2 + A_{n+2}^2 + A_{n+3}^2 + \cdots)^{1/2} 2^{-1/2}.$$
 (24)

Hence,

$$E_n(f(x)) \ge \frac{A_{n+1}}{2^{1/2}}.$$
 (25)

26

From (22), (23), and (25), we have

$$\delta \sum_{k=0}^{n} a_{k} \geq \| e^{x} Q_{n} - P_{n} \|_{L_{\infty[-1,1]}} \geq \frac{A_{n+1}}{2^{1/2}}.$$
 (26)

A simple calculation gives

$$b_{n+1} = \frac{a_0}{(n+1)!} + \frac{a_1}{n!} + \frac{a_2}{(n-1)!} + \dots + a_n \ge \frac{1}{(n+1)!} \left(\sum_{k=0}^n a_k\right). \quad (27)$$

Hence, from (26), (27), and (23),

$$\delta \sum_{k=0}^{n} a_{k} \geqslant \frac{A_{n+1}}{2^{1/2}} \geqslant \frac{\sum_{k=0}^{n} a_{k}}{2^{n}(2)^{1/2}(n+1)!},$$
(28)

i.e.,

$$\delta \geqslant \frac{1}{2^n(n+1)!(2^{1/2})}.$$

Remarks on Theorems A-D. By Bernstein's result, we have

$$\lim_{n\to\infty} \{(n+1)! E_n(e^x)\}^{1/n} = 2^{-1}.$$
 (29)

From Theorem A, with m = 0,

$$E_{0,n}(e^x) \leqslant \frac{\operatorname{const.} \cdot 2^{-n}}{(n+1)!}.$$
(30)

From Theorem C,

$$E_{0,n}(e^{x}) \ge \frac{(4-e)}{4e^{3}2^{n}(n+1)!}.$$
(31)

From (30) and (31),

$$\lim_{n\to\infty} \{(n+1)! E_{0,n}(e^x)\}^{1/n} = \frac{1}{2}.$$
 (32)

From Theorem D,

$$E_n^*(e^x) \ge \frac{1}{2^{n+1/2}(n+1)!}$$
 (33)

On the other hand, by Lemma 1,

$$E_n^*(e^x) \leqslant \frac{e}{2^n(n+1)!}.$$
(34)

Hence by (33) and (34) we have

$$\lim_{n\to\infty} \{(n+1) E_n^*(e^x)\}^{1/n} = 2^{-1}.$$
 (35)

Thus, from (29), (32), and (35),

$$\lim_{n \to \infty} \{(n+1)! \ E_n(e^x)\}^{1/n} = \lim_{n \to \infty} \{(n+1)! \ E_{0,n}(e^x)\}^{1/n}$$

$$= \lim_{n \to \infty} \{(n+1)! \ E_n^*(e^x)\} = 2^{-1}.$$
(36)

(36) shows that for e^x , E_n , $E_{0,n}$, and E_n^* are of the same order. Does this holds more generally? We shall show that this phenomenon fails for $e^x - e^{-1}$ and for e^{-x} .

From the above results it is clear that for $e^x - e^{-1}$ the formulas for E_n and E_n^* are the same as in (36). It can also be shown easily [2, p. 391] that $e^x - e^{-1}$ can be approximated uniformly by reciprocals of polynomials of degree *n* as close as we wish. But $E_{0,n}(e^x - e^{-1})$ is not known. We prove here the following

THEOREM E. Every $P_n(x)$ $(n \ge 3)$ satisfies

$$\left\| e^{x} - e^{-1} - \frac{1}{P_{n}(x)} \right\|_{L_{\infty}[-1,1]} \ge \frac{1}{28n^{2}}.$$
 (37)

Proof. Set

$$\delta = \left\| e^{x} - e^{-1} - \frac{1}{P_{n}(x)} \right\|_{L_{\infty[-1,1]}}.$$
(38)

Then we have over the interval $[n^{-2} - 1, 1]$, from (38),

$$\left|\frac{1}{P(x)}\right| \ge e^{x} - \frac{1}{e} - \delta \ge \frac{e^{n^{-2}}}{e} - \frac{1}{e} - \delta \ge e^{-1}n^{-2} - \delta.$$
(39)

Case (i). If $1/en^2 - \delta \leq 0$, then

$$\delta \geqslant \frac{1}{en^2} \,. \tag{40}$$

Case (ii). If $1/en^2 - \delta > 0$, then from (39),

$$\max_{(n^{-2}-1,1)} |P(x)| \leq \frac{en^2}{1 - en^2\delta}.$$
 (41)

By applying Lemma 2 to (41), we obtain

$$|P(0)| \leq \max_{[-1,1]} |P(x)| \leq \frac{25n^2}{1 - en^2\delta}.$$
 (42)

On the other hand, we get from (38)

$$1/\delta \leqslant |P(0)|. \tag{43}$$

29

From (42) and (43),

$$\delta \geqslant 1/28n^2. \tag{44}$$

Equation (37) follows from (40) and (44).

Clearly $E_n(e^{-x}) = E_n(e^x)$, $E_{0,n}(e^{-x}) = E_{0,n}(e^x)$. But as we shall see, $E_n^*(e^{-x})$ is much smaller.

THEOREM F. There is a rational function of degree n and of the form

$$r(x) = \frac{P_n(x)}{Q_n(x)} = \frac{\int_0^\infty t^n (t-1-x)^n e^{-t} dt}{\int_0^\infty t^n (t+1+x)^n e^{-t} dt},$$
(45)

for which we have, for all $n \ge 2$,

$$\|e^{-x} - er(x)\|_{L_{\infty}[-1,1]} \leq \frac{e}{(2n)!}.$$
 (46)

Proof. It is easy to check that for $-1 \le x \le 1$,

$$|r(x) - e^{-x-1}| = \left| \frac{\int_0^\infty t^n (t - x - 1)^n e^{-t} dt - \int_0^\infty t^n (t + 1 + x)^n e^{-(t + x + 1)} dt}{\int_0^\infty t^n (t + 1 + x)^n e^{-t} dt} \right|$$
$$= \left| \frac{\int_0^\infty t^n (t - x - 1)^n e^{-t} dt - \int_{1+x}^\infty (t - x - 1)^n t^n e^{-t} dt}{\int_0^\infty t^n (t + 1 + x)^n e^{-t} dt} \right| (47)$$
$$= \frac{\left| \int_0^{1+x} t^n (x + 1 - t)^n e^{-t} dt \right|}{\left| \int_0^\infty t^n (t + 1 + x)^n e^{-t} dt \right|} = \frac{I_1}{I_2}.$$

By observing the known fact that

$$t(x+1-t)\leqslant \frac{(1+x)^2}{4},$$

we get for all $x \in [-1, 1]$

$$I_1 \leqslant \int_0^\infty e^{-t} dt. \tag{48}$$

On the other hand, we have for $-1 \le x \le 1$,

$$I_2 \geqslant \int_0^\infty t^{2n} e^{-t} dt = (2n)!.$$
 (49)

Equation (46) follows from (47), (48), and (49).

OPEN PROBLEMS

Q.1. Is it possible to approximate e^x on [-1, 1] by polynomials of degree *n* having nonnegative coefficients only with an error better than the one obtained by $\sum_{k=0}^{n} x^k/k!$?

Q.2. How close can one approximate e^x on [-1, 1] by monotone polynomials of degree $\leq n$?

Q.3. How close can one approximate e^x on [-1, 1] by the ratio of two monoton polynomials of degree $\leq n$?

REFERENCES

- 1. S. N. BERNSTEIN, "Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle," Chelsea, New York, 1970.
- 2. B. BOEHM, Convergence of best rational Tchebyshev approximations, Trans. Amer. Math. Soc. 115 (1965), 388-399.
- 3. C. JORDAN, "Calculus of Finite Differences," Chelsea, New York, 1947.
- 4. G. MEINARDUS, "Approximation of Functions: Theory and Numerical Methods," Springer-Verlag, New York, 1967.
- 5. D. J. NEWMAN, Rational approximation to e^{-x} , J. Approximation Theory, 10 (1974), 301-303.
- 6. D. J. NEWMAN, Rational approximation to e^x , to appear.
- 7. A. F. TIMAN, "Theory of Approximation of Functions of a Real Variable," Pergamon, New York, 1963.